

Dale W. Schaefer Department of Chemical and Materials Engineering University of Cincinnati Cincinnati, OH 45221-0012 dale.schaefer@uc.edu

)ò

Source of x-rays, light or neutrons

Intensity vs Angle

Real Space Imaging

ιoμm

Agglomerates

Precipitated Silica

 $(NaO) (SiO_2)_{3.3} + HCl \longrightarrow SiO_2 O + NaCl$

Aggregates

Primary Particles

Seven orders of magnitude in length scale. How can the structure be parameterized?

UNIVERSITY OF Cincinnati

Bragg's Law and the scattering vector, q

Hierarchical Structure from Scattering

Why Reciprocal Space?

Ultra-small-angle neutron scattering: a new tool for materials research. Cur. Opinion Sol. State & Mat Sci, 2004. 8(1): p. 39-47.

Characterizing Disorder in Real Space

Depends on latitude and longitude. Too much information to be useful.

Depends on separation distance. Retains statistically significant info.

Resolution problems at small rOpacity problems for large r

Intensity from Amplitude

$$\Gamma_{\rho}(r) = \int \rho(u)\rho(u+r)du$$

Small-Angle Scattering from Spheres

$$\sin\theta = \frac{\lambda}{2d} \xrightarrow{d >> \lambda} \theta$$

Large object scatter at small angles

Scattering from a Spherical Particle

v = particle volume

Guinier Radius

Derived in 5.2.4.1

Guinier Fits (PS 13)

Correlated Particles

Packing Factor ~ 6

Porod's Law for N Spheres (qR>>1)

6/16/2010 ANL-ORNL 15

Fractal description of disordered objects

Mass Fractal Dimension = d

Rough and Diffuse Interfaces

Sharp interface

fractal or self-affine surface

Scattering from Fractal Objects

Scattering from colloidal aggregates

Precipitated Silica

Hierarchical Structure from Scattering

Colloidal Silica in Epoxy

EPON 862 + Cure W 1000 100 50 nm d∑/VdΩ (cm⁻¹) wt% 25.0% 20.0% 10.0% 5.0% 1.3% 0.5%0.001 0.1 0.01 q (Å⁻¹) **Exclusion zone**

Mechanical Properties are "normal"

 $\alpha = aspect ratio$

0.01% Loading CNTs in Bismaleimide Resin

6/16/2010 ANL-ORNL 26

838-100-2 5.0kV x100k SE 12/5/05

500nm

0.05% Carbon in Bismaleimide Resin

TEM of Nanocomposites

Hyperion MWNT in Polycarbonate

Pegel et al. Polymer (2009) vol. 50 (9) pp. 2123-2132

Morphology and Mechanical Properties

Halpin-Tsai, random, short, rigid fiber limit

$$E_{\delta} = \frac{E_{c}}{E_{m}} = 1 + 0.4\alpha\phi$$
$$\cong 1 + 2\phi$$

No better than spheres

CNTs in Epoxy

Assumes no connectivity

6/16/2010 Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. Comp. Sci. & Tech. 2005, 65, (15-16), 2300-2313. ANL-ORNL 30

Layered Silicates

ANL-ORNL 31

Dispersion

USAXS NaMMT in Water

< 100 Å =Sheet-like

No evidence of interparticle correlation

Exfoliated

q

Simplified Disk Model

Crumpled Surfaces and the Flexible Sheet Model

Flexible Sheet Model

$$E_{\delta} = 1 + \alpha \varphi = 1 + 20\varphi$$

Conclusions

- 1. Aggregation is ubiquitous in nanocomposites.
- 2. Large aggregates don't reinforce hard materials.
- 3. Large enhancements are due to impact of filler on matrix.
- 4. Abusive dispersion may be counterproductive.
- 5. Skipping research in favor of "breakthrough materials" is wasteful.

1. Schaefer, D.W., J. Zhao, H. Dowty, M. Alexander, and E.B. Orler, *Nanofibre Reinforcement of Soft Materials*. Soft Matter, 2008. 4(10): p. 2071 - 2079.

2. Kohls, D.J., D.W. Schaefer, R. Kosso, and E. Feinblum, *Silica Fillers for Elastomer Reinforcement*, in *Current Topics in Elastomers Research*, A.K. Bhowmick, Editor. 2008, CRC Press: Boca Raton, FL. p. 505-517.

3. Chen, C., R.S. Justice, D.W. Schaefer, and J.W. Baur, *Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties* Polymer, 2008. 49(17): p. 3805-3815.

4. Schaefer, D.W. and R.S. Justice, *How nano are nanocomposites?* Macromolecules, 2007. 40(24): p. 8501-8517.

- Ryan Justice, Jeff Baur, Janis Brown, Hilmar Koener, Rich Vaia (AFRL)
- Chenggang Chen and Dave Anderson (University of Dayton Research Institute)
- Jan Ilavsky (Argonne National Laboratory)
- Doug Kohls, Jian Zhao, Prashant Rajan (University of Cincinnati)

